
www.manaraa.com

Proceedings of the Interdisciplinary STEM Teaching and
Learning Conference

Volume 1 Article 9

5-2017

Learning to Program in Python – by Teaching It!
Bryan J. Fagan M. Ed.
Lumpkin County Middle School, bryan.fagan@lumpkinschools.com

Bryson Payne
University of North Georgia, bryson.payne@ung.edu

Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/
stem_proceedings

Part of the Science and Mathematics Education Commons

This article is brought to you for free and open access by the Journals at Digital Commons@Georgia Southern. It has been accepted for inclusion in
Proceedings of the Interdisciplinary STEM Teaching and Learning Conference by an authorized administrator of Digital Commons@Georgia
Southern. For more information, please contact digitalcommons@georgiasouthern.edu.

Recommended Citation
Fagan, Bryan J. M. Ed. and Payne, Bryson (2017) "Learning to Program in Python – by Teaching It!," Proceedings of the Interdisciplinary
STEM Teaching and Learning Conference: Vol. 1 , Article 9.
DOI: 10.20429/stem.2017.010109
Available at: https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9

https://digitalcommons.georgiasouthern.edu/stem_proceedings?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@georgiasouthern.edu

www.manaraa.com

Learning to Program in Python – by Teaching It!

Abstract
The US Bureau of Labor Statistics predicts over 8 million job openings in IT and computing, including 1
million cybersecurity postings, over the current five-year period. This paper presents lessons learned in
preparing middle-school students in rural Georgia for future careers in computer science/ IT by teaching
computer programming in the free, open-source programming language Python using Turtle graphics, and
discusses exercises and activities with low-cost drones, bots, and 3D printers to get students interested and
keep them engaged in coding. Described herein is one pair of instructors’ (one middle-school, one university)
multi-year, multi-stage approach to providing engineering and technology courses, including: how to code
Turtle graphics in Python; how to engage children by using short, interactive, visual programs for every age
level; building cross-curricular bridges toward technology careers using 3D printing, robotics, and low-cost
drones; and, how to build more advanced programming skills in Python.

Creative Commons License
Creative
Commons
Attribution
4.0
License

This work is licensed under a Creative Commons Attribution 4.0 License.

This article is available in Proceedings of the Interdisciplinary STEM Teaching and Learning Conference:
https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9?utm_source=digitalcommons.georgiasouthern.edu%2Fstem_proceedings%2Fvol1%2Fiss1%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

Learn to Program in Python - by Teaching It!
Bryan J. Fagan, Lumpkin County Middle School

Bryson R. Payne, University of North Georgia

Abstract: The US Bureau of Labor Statistics predicts over 8 million job openings
in IT and computing, including 1 million cybersecurity postings, over the
current five-year period. This paper presents lessons learned in preparing
middle-school students in rural Georgia for future careers in computer science/
IT by teaching computer programming in the free, open-source programming
language Python using Turtle graphics, and discusses exercises and activities
with low-cost drones, bots, and 3D printers to get students interested and
keep them engaged in coding. Described herein is one pair of instructors’ (one
middle-school, one university) multi-year, multi-stage approach to providing
engineering and technology courses, including: how to code Turtle graphics
in Python; how to engage children by using short, interactive, visual programs
for every age level; building cross-curricular bridges toward technology careers
using 3D printing, robotics, and low-cost drones; and, how to build more
advanced programming skills in Python.

Introduction
 The initial inspiration for an Engineering and Technology course at a
rural middle school, which now includes computer programming, originated
from the desire to provide a unique approach to teaching problem solving
skills to my students. My personal observation at that time, after a decade of
teaching, was that my students were overly focused on getting a correct answer
and not on the process of finding solutions. With an interest in computers and
a minimal background in computer programming, I proposed to my school's
administration, and eventually got approved, to teach robotics during my
planning period. Within a school year I had acquired, on a very limited budget,
some LEGO Mindstorm Robotics kits and started preparing engineering and
programming challenges for my “lego kids”, as they were called by my colleagues.
 The primary goal of the robotics program was for students to shift from
an answer-driven attitude of learning to embracing multiple approaches and
possible solutions for any given problem or challenge. At first, my students were
slow to embrace the paradigm shift to problem solving and were often frustrated
when it came to solving multifaceted problems with as many possible solutions.

99 99

Fagan and Payne: Learning to Program in Python – by Teaching It!

Published by Digital Commons@Georgia Southern, 2017

www.manaraa.com

I expected this change to be challenging for my students but did not expect it
to also be a challenge to the parents who vocally expressed concern about their
child's progress in the class and what they could do to better prepare them for the
challenges. It took time, but by the end of the class my students were asking good
questions, seeking multiple solutions, modifying their approach when necessary,
and collaborating with each other.
 The robotics program lasted for several years and was, in many ways, a
successful attempt at robotics, programming, and changing the way my students
approached problem solving. The robotics program showed my students were
highly motivated, problem solvers, when challenged and would be interested in
a multi-grade connections course in engineering and technology. It also proved
to be the foundation of a larger engineering and technology program, thanks to
the ability to demonstrate significant student demand through high participation
rates in both robotics classes and after-school programs.

Background
 Much, if not the majority, of the literature on middle-grades computing
curriculum concerns the use of visual applications, like Scratch, Alice, or even
Flash (described below), to teach introductory programming, and many school
systems start their programming courses as special electives or after-school
programs. Webb and Rosson (2013), in one typical example, used the drag-
and-drop, block-based programming environment Scratch to teach an outreach
enrichment program for middle-school girls. The researchers used scaffolded
activities, stepping from building a story, to solving a maze, to storing data in a
list, to working with sensors and motors.
 Before Scratch, previous researchers had even employed visual tools
like Macromedia (now Adobe) Flash, the once-popular Web animation and
programming tool, to teach computing concepts in middle school using
animations and simple 2D games. One such team developed an after-school
program focused on game programming in Flash (Werner, Campe and Denner
2005), and found that IT fluency overall improved for middle-school girls who
created Flash games.
 LEGO robotics have also been popular tools in teaching introductory
programming concepts and in stimulating STEAM interest and motivation in
middle-schoolers (Kaloti-Hallak, Armoni, and Ben-Ari 2015). Like Scratch, the
LEGO programming software allows easy drag-and-drop blocks to form the logic

100 100

Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, Vol. 1 [2017], Art. 9

https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9
DOI: 10.20429/stem.2017.010109

www.manaraa.com

of a program, but the effects can be seen in real life by running the “code” on a
LEGO Mindstorms robot. In our program, we had access to a limited number of
LEGO robots, and we wanted to take advantage of both the variety of activities
and the inherently interesting “hook” of getting students to program the bots to
perform tasks in the live classroom environment. However, robots alone could
not fill a full nine-week course at the scale we had the opportunity to teach
programming, let alone a full semester or eventually a year of coding.
 Other researchers have used different visual software, like the
AgentSheets platform used in Scalable Game Design (Bennett, Koh, and
Repenning 2011) that allowed students to build visual games like Frogger
relatively easily. Others used virtual 3D software like Curiosity Grid (Hulsey,
Pence and Hodges 2014) in a one-week summer coding camp environment for
girls, to motivate greater STEAM interest in middle-school females. Still others
have developed entire CS Principles curricula using game-based systems like
ENGAGE (Buffum et al. 2014).
 But, similar to Scratch and other visual programming tools, software
packages like these were built specifically for teaching, not for programming.
This introduces two significant obstacles in developing coding fluency and
problem-solving ability in programming in general. First, the software limits
the extent of the programming students can do; by building teaching-based
tools, some essential low-level programming constructs are unfortunately left
out, forcing students to feel like they’re not doing “real” programming. Second,
there is often a learning curve in figuring out how to use an already-limited tool,
taking time away that could have been spent learning how to solve problems by
programming in a text-based language.
 More recently, partly in response to these issues, there has been a trend
toward using text-based programming languages, most notably, Python. Armony,
Meerbaum-Salant, and Ben-Ari (2014) studied middle school students who had
studied Scratch versus those who had no programming experience at all, and
found that, while the Scratch users could pick up concepts faster in a text-based
programming course in high school, there was no significant difference in overall
achievement at the end of the high-school class. This seemed to indicate that
there was an initial benefit to learning the concepts taught in Scratch, but that the
benefit faded over time and had less lasting impact on “real” programming ability
in text-based languages by the end of a second course.
 Tabet et al. (2016) designed a middle-school curriculum that started

101 101

Fagan and Payne: Learning to Program in Python – by Teaching It!

Published by Digital Commons@Georgia Southern, 2017

www.manaraa.com

out in Alice, a 3D drag-and-drop environment used to create animated scenes,
for learning basic programming concepts, but quickly progressed to Python
to convey more advanced problem-solving skills in a text-based language. The
authors were attempting to achieve a better “mediated transfer” of concepts
between the visual Alice tool and the text-based Python language, and found
some positive impact on performance for students who learned Alice in seventh
grade followed by Python in eighth grade. However, this was in a middle school
that provided two full years of programming instruction with support from four
university faculty.

Implementation
 I knew I would have to be resourceful, as is the case for teachers in many
smaller community schools, to begin an engineering program in rural north
Georgia. The robotics program was successful, but it was not a cost-effective
platform for teaching a multi-grade connections course in a school system
that currently did not have a budget for engineering and technology. While
reading through the Georgia Performance Standards (GPS) for Engineering and
Technology and preparing the course curriculum, I began actively looking for
places to integrate computer programming as a cost-effective means to teach
the engineering and technology subject-matter content. In the first iteration of
a “real” technology course at my school, I found myself teaching up to twenty-
six students per class, six classes per day, in nine-week rotations, for a total of
twenty-four different classes in one school year. Even with the drastic price drop
for engineering and technology resources (such as Arduino, Raspberry Pi, and
3D printers), I knew I would have to use coding to teach the GPS standards, as
well as career-relevant skills, and keep the cost of the class per student as low as
possible. My school had some refurbished computers that were not being used,
and an almost closet-sized classroom that I could use as a makeshift engineering
room and computer lab. I was eager to get started, so overlooking some obvious
challenges was easy from the start, but they would have to be addressed as the
school year, and the development of the program, progressed.
 I chose to use a “real” text-based programming language, Python, from
the start, with very visual programs based on Turtle graphics to give students
immediate, graphics-based feedback as they developed basic through advanced
programming skills. My primary resource for teaching computer programming
was a coding book by my co-author for this paper, titled Teach Your Kids to

102 102

Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, Vol. 1 [2017], Art. 9

https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9
DOI: 10.20429/stem.2017.010109

www.manaraa.com

Code. I divided the book into two parts so it could be spread out over two years
(sixth and seventh grade). This afforded me time during the short quarter (nine
weeks) to teach engineering and computer programming content without having
to sacrifice time in either area. I would also have just enough time to properly
introduce coding to a student body that had zero programming experience.
 The first five chapters of Teach Your Kids to Code were what I taught to
my sixth graders, introducing the concepts of basic coding, loops, conditions
and variables with colorful, visual apps in Turtle graphics. The coding unit
lasted four weeks and amazingly my sixth grade students used the Python
programming language to write around 40 different programs in that time. The
seventh grade students used the second half of the coding book to get more
involved in functions, timing, animations and game programming. This was
the continuation from the introductory chapters and included more advanced
programming concepts.
 Because the material is brand new to the student body, the course is
being phased in over a three-year period, and we’re in the second year. Next year
the eighth grade students will be learning Java, which is a more abstract but even
more widely used programming language and a more functional skill set for
someone interested in computer programming for AP Computer Science and
college classes. Furthermore, I decided to enhance the programming curriculum
through creative use of LEGO robots, programmable quad-copter Parrot Mini
Drones, and 3D printers, both to engage students in more physical, kinesthetic
activities while coding, and to interest students in broader STEAM applications
and technologies across the curriculum beyond mere programming.
 One major challenge that needed my attention was the classroom
space. My classroom was way too small for teaching a course that included the
need for computer equipment, engineering equipment, storage, materials and
peripherals. An ideal environment for an engineering course, that included
computer programming like my course, realistically required each student to
have his or her own computer and sufficient space to interact with engineering
equipment, such as drones, 3D printers, and electronic devices safely. I could not
change the size of the room, so arranging the space as creatively and efficiently
as possible was my only option. That meant only having twelve computers and
six tables for twenty-six students. Initially I had two to three students writing
one program at a time on one computer. This led immediately to disruptive
behavior and a lack of inclusive learning, as the student holding the book was not

103 103

Fagan and Payne: Learning to Program in Python – by Teaching It!

Published by Digital Commons@Georgia Southern, 2017

www.manaraa.com

learning at the same pace, if at all, as the student writing the code. This challenge
needed to be resolved quickly and, for me, the solution was to use the school’s
computer labs whenever possible. Fortunately for my situation, my school has a
separate computer lab for each grade that I could usually schedule several times
per week when needed. This may not be an option for every school, while others
may have computer labs in almost every classroom, but my recommendation is
to get the computer-to-student ratio as near to 1:1 as possible. I rotated, three
times a day, between the different computer labs using a mobile cart to hold the
coding books, but having one computer per student while programming reduced
disruptions (almost completely) and greatly increased student interest and
confidence in coding. The students were more excited each day we visited the
computer lab, took more ownership of their programming, and were better able
to correct errors and write programs in Python.
 There are plenty of off-the-shelf kits for engineering and coding that
are affordable and easy to integrate into the classroom. One option is a Parrot
Mini drone that allows the user to fly manually, or by using block programming
through an application called Tickle (as of now only available through the iTunes
store) or Tynker, available for both Android and iOS devices. These drones are
affordable ($59-75 or so on Amazon), so several can be purchased for group
projects, and they are extremely durable. My students were able to use what
they had learned about programming to code flight plans directly into Tickle
then watch as their drone took off, flew around the gym, performed tricks, then
landed safely.
 Another two options that are an excellent mix of engineering and
programming are Arduino and Raspberry Pi. Both of these electronic sets are
extremely affordable, easy to set up, modify, and program. The Internet has
plenty of great projects for both and most provide step-by-step instructions
and downloadable programs to run. The options on the market right now are
limitless, but not all STEAM products are created equal, so be sure to research
what you plan to buy before spending significant money. Consider getting one
or two devices as a mini-pilot, especially if you have a few highly motivated
and capable students that could attempt a few labs and projects, then make a
presentation to the class (or to your administration, asking for funding for full
classroom sets).

104 104

Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, Vol. 1 [2017], Art. 9

https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9
DOI: 10.20429/stem.2017.010109

www.manaraa.com

Conclusions
 The results of the Engineering and Technology class have been
evidenced in several areas since I began teaching the course last year. I have seen
a definite increase in student interest, both male and female, for engineering,
technology, and computer programming-related topics. My students have shown
a marked increase in the desire to pursue an engineering or programming related
career, and they often inquire about what courses our local high school offers
in engineering, technology, and computer programming. My students have also
demonstrated greater ability and interest in peer collaboration, shared problem
solving, and they are far more comfortable learning without having a clear,
definable answer to challenges.
 I have also learned over the last year that an engineering program is
essential if we, as educators, want to best prepare our students for the workplace
they will be entering—a workplace in desperate need of persons knowledgeable
of and comfortable with engineering, technology, and computer programing.
I also learned that, as part of that program, computer programming in some
degree must be included. Many of the electronic components and products we
used in the course to learn engineering, including 3D printers, drones, robotics,
and Arduinos, were all modifiable using computer programming. My students
were quick in insisting we find ways to modify, reprogram, or “hack” everything
in the classroom. I agreed, and we quickly set about, over several weeks, teaching
ourselves the same standards I had planned for in my “official” lesson plans.
 Last, but not least, I have learned that teaching engineering, technology,

Getting started in STEAM

• Look for free resources, and start with what you have. You can easily begin
coding if your school has an existing computer lab. If not, use one computer in
your room as a lab station, and rotate students on and off.

• Keep costs low by purchasing affordable kits in small quantities, and let groups
of students create projects together as teams.

• Get parents involved by hosting STEAM nights that include student-led
presentations and computer programming.

• Demonstrate to your administration the effectiveness of STEAM teaching by
inviting them to program with the students, observe student created projects,
and attend a STEAM night.

• Use student achievement and student/parent interest to justify a larger budget
for STEAM related resources and even an Engineering and Technology course.

	

105 105

Fagan and Payne: Learning to Program in Python – by Teaching It!

Published by Digital Commons@Georgia Southern, 2017

www.manaraa.com

and computer programming can be frightening if you have little to no
experience, but it can be done, and is honestly easier than I first imagined. One
thing to remember is that you do not have to know everything about every
programming language, hardware platform, type of technology, or electronic
device. I discovered that most students are very eager to learn independently and
then share what they have learned with their peers. Allowing them to do this
worked so well that I took every Friday off from teaching so they could work on
independent technology projects. I used the Georgia Educational Technology
Fair categories (http://www.gatechfair.org/categories) as a blueprint for their
projects, grading rubrics, and instructions. At the end of the course they took
great pride in presenting to the class their projects and what they had learned.
 As for coding, starting with a programming language that is easier to
read and write, such as Python, will help grow your confidence and will definitely
be easier for students new to programming to learn. Writing the program for
yourself prior to teaching is important for targeting potential pitfalls, identifying
common errors, and areas where students will be able to be creative and add
their own code. But, once the students jump in, letting them explore and try new
things, and being able to respond to questions with, “I’m not sure, let’s try and
see what happens!”, has been easier, and more fulfilling and instructive to me,
personally, than any other experience in my teaching career.
 As educators, by nature, we are resourceful and inquisitive. Teaching
and learning computer programming in many ways requires the same skill set.
Going online and searching for solutions to programming errors or problems is
very helpful. Being inquisitive and challenging yourself to write good programs
will only encourage your students to exhibit the same behavior. Add to that
an honest dose of being willing to try, fail, and figure out mistakes to build
something new, and you can teach yourself to code, while teaching it to your
students.

106 106

Proceedings of the Interdisciplinary STEM Teaching and Learning Conference, Vol. 1 [2017], Art. 9

https://digitalcommons.georgiasouthern.edu/stem_proceedings/vol1/iss1/9
DOI: 10.20429/stem.2017.010109

www.manaraa.com

References

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From Scratch to
 “Real” Programming. Trans. Comput. Educ., 14(4), 1-15.
 doi:10.1145/2677087
Bennett, V. E., Koh, K. H., & Repenning, A. (2011). CS education re-kindles cre
 ativity in public schools. Paper presented at the Proceedings
 of the 16th annual joint conference on Innovation and
 technology in computer science education, Darmstadt, Germany.
Buffum, P. S., Martinez-Arocho, A. G., Frankosky, M. H., Rodriguez, F. J., Wiebe,
 E. N., & Boyer, K. E. (2014). CS principles goes to middle school: learn
 ing how to teach "Big Data". Paper presented at the Proceedings of the
 45th ACM technical symposium on Computer science educa
 tion, Atlanta, Georgia, USA.
Hulsey, C., Pence, T. B., & Hodges, L. F. (2014). Camp CyberGirls: using a virtual
 world to introduce computing concepts to middle school girls.
 Paper presented at the Proceedings of the 45th ACM technical
 symposium on Computer science education, Atlanta, Georgia, USA.
Kaloti-Hallak, F., Armoni, M., & Ben-Ari, M. (2015). Students' Attitudes and
 Motivation During Robotics Activities. Paper presented at the
 Proceedings of the Workshop in Primary and Secondary Computing
 Education, London, United Kingdom.
Tabet, N., Gedawy, H., Alshikhabobakr, H., & Razak, S. (2016). From Alice to Py
 thon. Introducing Text-based Programming in Middle Schools. Paper
 presented at the Proceedings of the 2016 ACM Conference on
 Innovation and Technology in Computer Science Education, Arequipa,
 Peru.
Webb, H., & Rosson, M. B. (2013). Using scaffolded examples to teach compu
 tational thinking concepts. Paper presented at the Proceeding
 of the 44th ACM technical symposium on Computer science education,
 Denver, Colorado, USA.
Werner, L. L., Campe, S., & Denner, J. (2005). Middle school girls + games pro
 gramming = information technology fluency. Paper presented
 at the Proceedings of the 6th conference on Informa
 tion technology education, Newark, NJ, USA.

107 107

Fagan and Payne: Learning to Program in Python – by Teaching It!

Published by Digital Commons@Georgia Southern, 2017

	Proceedings of the Interdisciplinary STEM Teaching and Learning Conference
	5-2017

	Learning to Program in Python – by Teaching It!
	Bryan J. Fagan M. Ed.
	Bryson Payne
	Recommended Citation

	Learning to Program in Python – by Teaching It!
	Abstract
	Creative Commons License

	Learning to Program in Python â•fi by Teaching It!

